Manifold Routes to a Nucleus

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GROUPOID ASSOCIATED TO A SMOOTH MANIFOLD

‎In this paper‎, ‎we introduce the structure of a groupoid associated to a vector field‎ ‎on a smooth manifold‎. ‎We show that in the case of the $1$-dimensional manifolds‎, ‎our‎ ‎groupoid has a‎ ‎smooth structure such that makes it into a Lie groupoid‎. ‎Using this approach‎, ‎we associated to‎ ‎every vector field an equivalence‎ ‎relation on the Lie algebra of all vector fields on the smooth...

متن کامل

groupoid associated to a smooth manifold

‎in this paper‎, ‎we introduce the structure of a groupoid associated to a vector field‎ ‎on a smooth manifold‎. ‎we show that in the case of the $1$-dimensional manifolds‎, ‎our‎ ‎groupoid has a‎ ‎smooth structure such that makes it into a lie groupoid‎. ‎using this approach‎, ‎we associated to‎ ‎every vector field an equivalence‎ ‎relation on the lie algebra of all vector fields on the smooth...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

Obstructions to Fibering a Manifold

Given a map f : M → N of closed topological manifolds we define torsion obstructions whose vanishing is a necessary condition for f being homotopy equivalent to a projection of a locally trivial fiber bundle. If N = S, these torsion obstructions are identified with the ones due to Farrell [5].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Frontiers in Microbiology

سال: 2018

ISSN: 1664-302X

DOI: 10.3389/fmicb.2018.02604